Пятеро физиков из Шанхайского университета Цзяо Тун (Китай) провели эксперимент, в котором групповая скорость светового импульса, передаваемого по оптоволокну, становилась отрицательной.
Чтобы понять суть опыта, необходимо вспомнить, что распространение излучения в среде можно охарактеризовать сразу несколькими величинами. В самом простом случае монохроматического пучка света используется, к примеру, понятие фазовой скорости Vф — скорости перемещения определённой фазы волны в заданном направлении. Если показатель преломления среды, зависящий от частоты, равен n(ν), то Vф = с/n(ν), где с — скорость света в вакууме.
Задача усложняется, когда мы рассматриваем прохождение импульса, содержащего несколько разных частотных компонентов. Импульс можно представить себе как результат интерференции этих компонентов, причём в его пике они будут согласованы по фазе, а в «хвостах» будет наблюдаться деструктивная интерференция (см. рис. ниже). Среда с зависящим от частоты показателем преломления изменяет характер интерференции, заставляя волны каждой отдельной частоты распространяться со своей фазовой скоростью; если зависимость n от ν линейна, то результатом изменений будет временнóе смещение пика, тогда как форма импульса останется прежней. Для описания такого движения используют групповую скорость Vг = с/(n(ν) + ν•dn(ν)/dν) = с/nг, где nг — групповой показатель преломления.
Световой импульс (илл |
При сильной нормальной дисперсии (dn(ν)/dν > 0) групповая скорость может на несколько порядков уступать скорости света в вакууме, а в случае аномальной дисперсии (dn(ν)/dν < 0) — оказаться больше с. Более того, достаточно сильная аномальная дисперсия (|ν•dn(ν)/dν| > n) даёт отрицательные значения Vг, что приводит к очень интересным эффектам: в материале с nг < 0 импульс распространяется в обратном направлении, и пик переданного импульса выходит из среды раньше, чем пик падающего импульса в неё входит. Хотя такая отрицательная временнáя задержка кажется противоестественной, она никоим образом не противоречит принципу причинности.
Распространение свето |
Приведённые выше равенства показывают, что отрицательная групповая скорость достигается при достаточно быстром уменьшении показателя преломления с ростом частоты. Известно, что подобная зависимость обнаруживается вблизи спектральных линий, в области сильного поглощения света веществом.
Китайские учёные построили свой эксперимент по уже известной схеме, в основе которой лежит нелинейный процесс вынужденного бриллюэновского рассеяния (ВБР). Этот эффект проявляется как генерация стоксовой волны, распространяющейся в противоположном (по отношению к падающей волне, часто называемой накачкой) направлении.
Суть ВБР состоит в следующем: в результате электрострикции (деформации диэлектриков в электрическом поле) накачка создаёт акустическую волну, которая модулирует показатель преломления. Созданная периодическая решётка показателя преломления движется со звуковой скоростью и отражает — рассеивает вследствие брэгговской дифракции — часть падающей волны, причём частота рассеянного излучения испытывает доплеровский сдвиг в длинноволновую область. Именно поэтому стоксово излучение имеет меньшую, чем у накачки, частоту, и эта разность определяется частотой акустической волны.
Если стоксово излучение «запускать» в направлении, противоположном распространению падающей волны, оно будет усиливаться в процессе ВБР. В то же время излучение накачки будет испытывать поглощение, что, как мы уже говорили, необходимо для демонстрации отрицательной групповой скорости. Используя 10-метровый закольцованный отрезок одномодового оптоволокна, авторы выполнили условия наблюдения отрицательной Vг и получили групповую скорость, доходившую до –0,15•с. Групповой показатель преломления при этом оказался равен –6,636.
По материалам: ScienceNOW.